
THE EFFECT OF PRESSURE ON THE OXIDATION OF BENZHYDROL BY ALKALINE PERMANGANATE¹

Neil S. Isaacs*

Department of Chemistry, University of Reading, Reading, RG6 2AD and Karel A.H.Heremans Department of Physical Chemistry, Catholic University of Leuven, 200D Leuven B3030, Belgium

<u>Summary</u>. The rate of oxidation of benzhydrol and benzhydrol-d to benzophenone by alkaline bermanganate has been measured over a pH range 10 to 12.5 and pressures from 1 to 1000 bar. The pressure effect on the rate is small, $\Delta \overline{V} \stackrel{\neq}{=} -6$ to $-8 \text{ cm}^3 \text{mol}^{-1}$. This is held to support a hydrogen atom transfer in the rate-determining step.

The oxidation of secondary alcohols by alkaline permanaganate is of first order in each of the substrate, permanganate and OH^- and invariably shows a large primary kinetic isotope effect.²⁻⁴ The rate-determining step is inferred to consist in the transfer of hydrogen from the alkoxide ion to permanganate. Previous work has failed to clarify the nature of this step, whether a hydride ion or a hydrogen atom transfer is occurring since either could plausibly lead to the observed products, ketone and manganate.

Reaction constants, ρ , for the overall oxidations of substituted phenyltrimethylcarbinols are said to be small arguing against a hydride ion transfer.⁸ However, the electronic requirements for ionisation and for hydride transfer are opposite and may well be cancelling. The difficulties of distinguishing such pathways have been discussed.⁵ The volume of activation of this reaction should permit a distinction to be made since for hydride transfer alone there is a concentration of charge towards the manganate ion which would be accompanied by a large reduction in volume by electrostriction. One may compare the partial molar volumes of two similarly-sized ions, MnO_4^- and CrO_4^- , 42.5 and 19.7 cm³mol⁻¹ respectively (the value for MnO_4^- in aqueous solution is not available). The difference, 23 cm³mol⁻¹ is attributable to the increased electrostriction which in turn depends upon the square of the charge. The

	$\Delta \overline{V} \cdot H \cdot transfer$	H: transfer
R_2 CHOH + OH $\rightarrow R_2$ CHO + H_2 O	0	0
$R_2CHO^- \rightarrow R_2C=O$		+5 to +10
$R_2 CHO^- \rightarrow R_2 C-O^-$	+1	
$Mn^{VII}O_4 \rightarrow Mn^{VI}O_4H$		0
$Mn^{VII}O_4^- \rightarrow Mn^VO_4H^=$	-23	
R_2 CHOH + MnO ₄ \rightarrow (R_2 CHOH.MnO ₄)	-10	-10
(association)		
	$-30 \stackrel{+}{-} 10$	$0 - 5 \text{ cm}^3 \text{mo}^3$

Observed value of $\Delta \overline{V} \neq = -6 \stackrel{+}{-} 2 \text{ cm}^3 \text{mol}^{-1}$

We have measured rates of oxidation of benzhvdrol and of benzhydrol-d $(10^{-2}M)$ by permanganate $(8.10^{-4}M)$ over the pH range 10 to 12.5 at pressures ranging from 1 to 1000 bar at 25° . A conventional high pressure kinetic cell was used for the slower reactions and a high pressure stopped-flow cell⁷ for fast systems. In all cases, the reaction obeyed first-order kinetics (r at least 0.998) and the value of the activation volume was in the range -6 to -8 cm³mol⁻¹. This small pressure effect clearly denies any extensive electrostrictive effect. If we assume that hydrogen transfer is advanced at the transition state, since the PKIE is a maximum, this result argues in favour of a hydrogen atom transfer process as the slow step.

References

- 1. Reactions at High Pressure, Part 7.
- R.Stewart, J.Amer.Chem.Soc., <u>79</u>, 3057, (1957); K.Wiberg and R.Stewart, J.Amer.Chem.Soc., 77, 1786, (1955).
- 3. R.Stewart and R. Van der Linden, Tetrahedron Letters 28, (1960).
- 4. R.Stewart and J.A.MacPhee, J.Amer.Chem.Soc., 93, 4271, (1971).
- 5. J.L.Kurz, J.Amer.Chem.Soc., 86, 2229 (1964).
- 6. N.S.Isaacs, 'Liquid Phase High Pressure Chemistry', Wiley (1981).
- K.Heremans, J.Snauwaert, and J.Rijkenberg, Rev.Sci.Instr., <u>51</u>, 806, (1980).
- R.Stewart, 'Oxidation in Organic Chemistry', K.B.Wiberg (Ed.), Academic Press, New York, (1965), Chap.I.

(Received in UK 11 September 1981)